Using satellite-derived PM_{2.5} dataset to assist air pollution management in California

H-AQAST Member: Minghui Diao (PI), Frank Freedman, Sen Chiao, Ana Rivera* Department of Meteorology and Climate Sciences; *Department of Geography, San Jose State University

Co-I: Mohammad Al-Hamdan, Universities Space Research Association, NASA Marshall Space Flight Center

Co-I: Akula Venkatram, Department of Mechanical Engineering, University of California Riverside

Stakeholder Contact: Saffet Tanrikulu (Bay Area Air Quality Management District) Cynthia Garcia (California Air Resource Board) Sang-Mi Lee (South Coast Air Quality Management District)

Collaborators: Meytar Sorek-Hamer & Robert Chatfield (NASA ARC)

Some of the highlights

A review paper in preparation for PM_{2.5} exposure estimates

Methods, availability, and applications of PM2.5 exposure estimates derived from ground measurements, models, and satellite datasets

Minghui Diao^a*, Tracey Holloway^b, Seohyun Choi^b, Susan M. O'Neill^c, Mohammad Z. Al-Hamdan^d, Aaron van Donkelaar^e, Randall V. Martin^{e,1}, Xiaomeng Jin^f, Arlene M. Fiore^f, Daven K. Henze^g, Forrest Lacey^{g,h}, Patrick L. Kinneyⁱ, Frank Freedman^a, Narasimhan K. Larkin^c, Yufei Zou^k, Ambarish Vaidyanathan^j

"San Jose State University, Department of Meteorology and Climate Science, One Washington Square, San Jose, California, USA, 95192-0104;

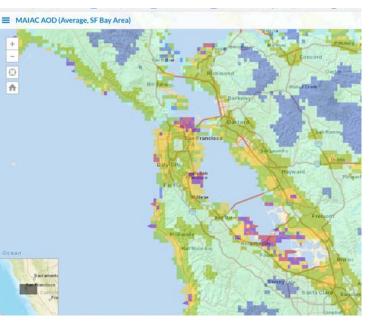
^bUniversity of Wisconsin-Madison, Nelson Institute Center for Sustainability and the Global Environment (SAGE) and Department of Atmospheric and Oceanic Sciences, 201A Enzyme Institute, 1710 University Ave., Madison, Wisconsin, USA, 53726;

^cUnited States Department of Agriculture Forest Service, 400 N 34th St., Suite 201, Seattle, Washington, USA, 98103-8600;

^dUniversities Space Research Association, NASA Marshall Space Flight Center, National Space Science and Technology Center, 320 Sparkman Dr., Huntsville, Alabama, USA, 35805;

*Dalhousie University, Department of Physics and Atmospheric Science, 6299 South St, Halifax, Nova Scotia, Canada, B3H 4R2;

¹Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA, 02138


^fColumbia University, Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory, 61 Route 9W, Palisades, New York, USA, 10964;

^eUniversity of Colorado, Mechanical Engineering Department, 1111 Engineering Drive UCB 427, Boulder, CO, USA, 80309;

^hNational Center for Atmospheric Research, Atmospheric Chemistry Observations and Modeling, 3450 Mitchell Ln, Boulder, CO, USA, 80301;

Boston University School of Public Health, Department of Environmental Health, 715 Albany Street, Talbot 4W, Boston, Massachusetts, USA, 02118;

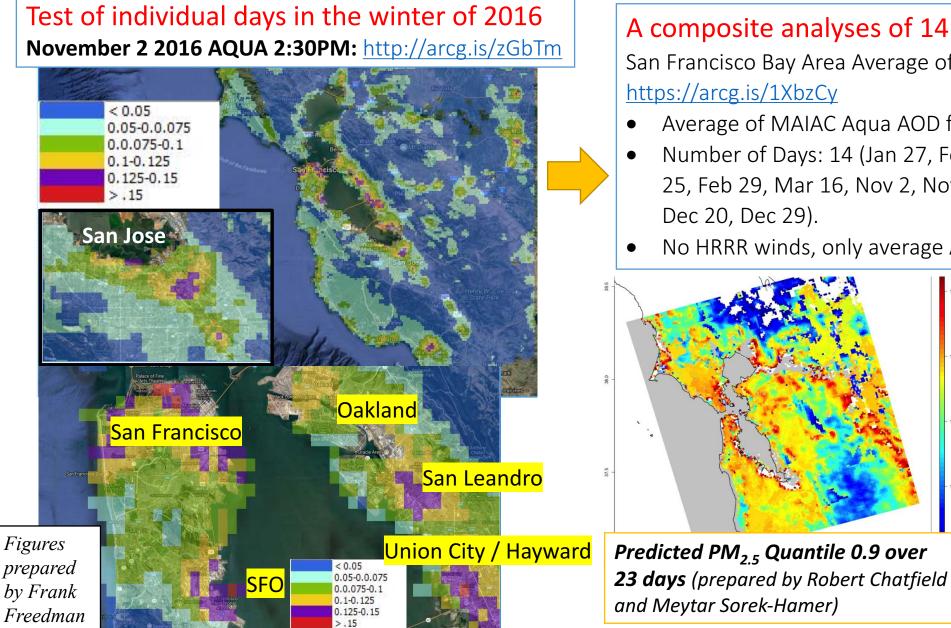
iCenters for Disease Control and Prevention, 1600 Clifton Road, Mail Stop E-19, Atlanta, Georgia, USA, 30333. University of Washington, School of Environmental and Forest Sciences, Anderson Hall, Seattle, WA, USA, 98195; A visualization website of satellite AOD using ArcGIS interface

https://arcg.is/1XbzCy

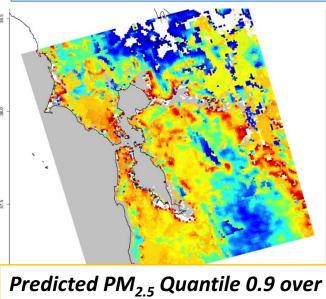
Urban Transportation and Air Pollution

1st Edition by <u>Akula Venkatram</u> (Author), <u>Nico</u> <u>Schulte</u> (Author)

ISBN-13: 978-0128115060 ISBN-10: 0128115068

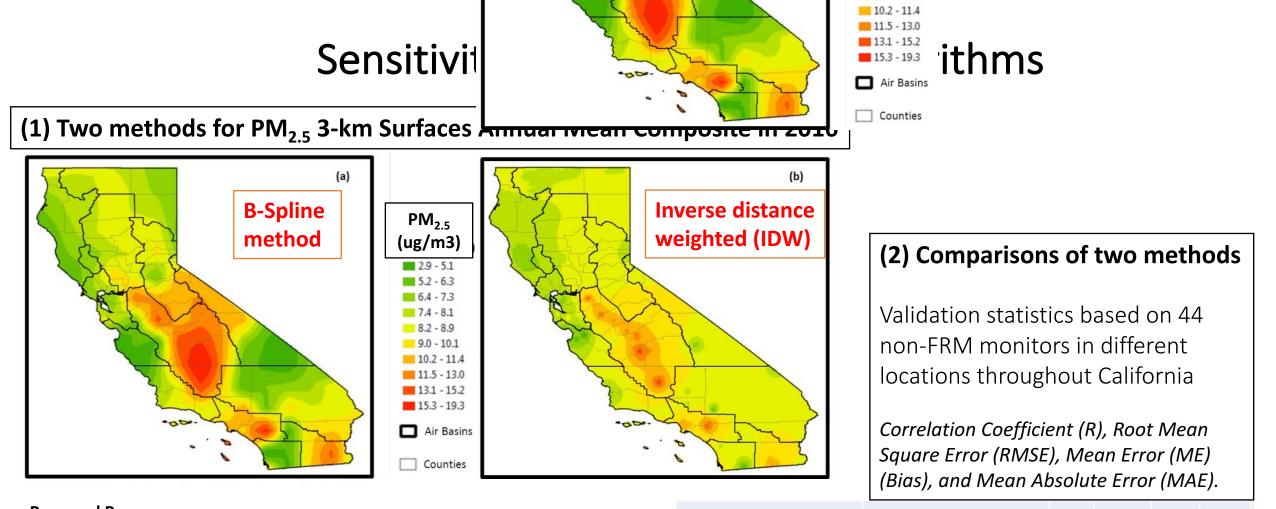


URBAN TRANSPORTATION AND AIR POLLUTION



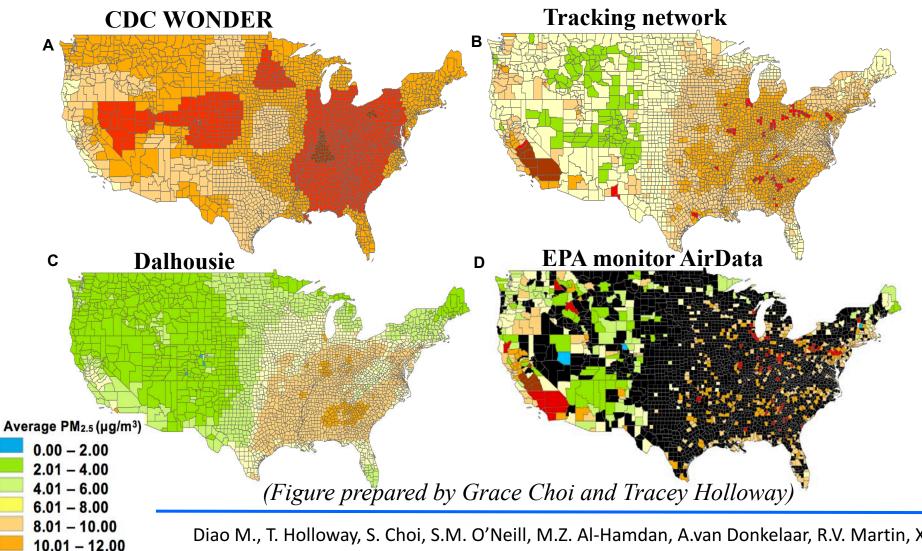
San Francisco Bay Area average of AOD ArcGIS visualization

A composite analyses of 14 days in 2016 winter San Francisco Bay Area Average of AOD: https://arcg.is/1XbzCy


- Average of MAIAC Aqua AOD fields
- Number of Days: 14 (Jan 27, Feb 13, Feb 22, Feb 24, Feb 25, Feb 29, Mar 16, Nov 2, Nov 4, Nov 8, Nov 9, Nov 13, Dec 20, Dec 29).
- No HRRR winds, only average AOD image.

Selection criteria:

- (1) clear skies,
- (2) good AOD coverage
- (3) 500 mb geopotential
- height \geq 576 decameters


A two-page proposal submitted to California Air *Resource Board for AB617* legislation

Prepared By: Dr. Mohammad Al-Hamdan USRA at NASA/MSFC April 30, 2018 *Details about the surfacing methods used can be found at Al-Hamdan et al. (2009, JAWMA; 2014, Geocarto)

Data Source	R	RMSE	MAE	ME
AQS Only	0.68	4.59	3.45	0.71
	0.76	4.14	3.15	0.84
	\smile	\smile	\smile	0.06
	\sim			
	ged AQS/MODIS(AQS Only	AQS Only 0.68 ged AQS/MODIS 0.76 AQS Only 0.742	AQS Only 0.68 4.59 ged AQS/MODIS 0.76 4.14 AQS Only 0.742 4.714	AQS Only 0.68 4.59 3.45 ged AQS/MODIS 0.76 4.14 3.15

Comparisons of three commonly-used publicly available PM_{2.5} datasets in the contiguous U.S.

12.01 - 14.00

14.01 ≤

ArcGIS-generated county-level maps of PM_{2.5} in 2011

- CDC WONDER exhibits higher PM_{2.5} and a large regional maximum over the central U.S.
- (2) For Southern California,
 EPHTN shows the highest
 PM_{2.5} (over 14 μg/m3)
- (3) Dalhousie exhibits lower PM_{2.5} overall, and is more spatially homogeneous over the western U.S.

Diao M., T. Holloway, S. Choi, S.M. O'Neill, M.Z. Al-Hamdan, A.van Donkelaar, R.V. Martin, X. Jin, A.M. Fiore, D.K. Henze, F. Lacey, P.L. Kinney, F. Freedman, N.K. Larkin, Y. Zou, A. Vaidyanathan Methods, availability, and applications of PM_{2.5} exposure estimates derived from ground measurements, models, and satellite datasets, in preparation.

Statistical distributions of three PM_{2.5} datasets in the contiguous US in 2011

- (1) CDC WONDER: overall higher values
- (2) Dalhousie: the lowest mean values of PM_{2.5} overall, and the largest standard deviation

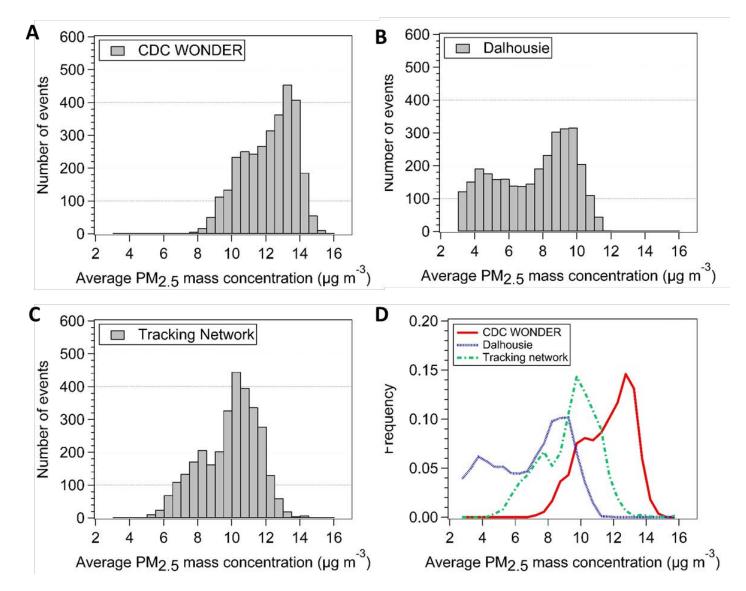
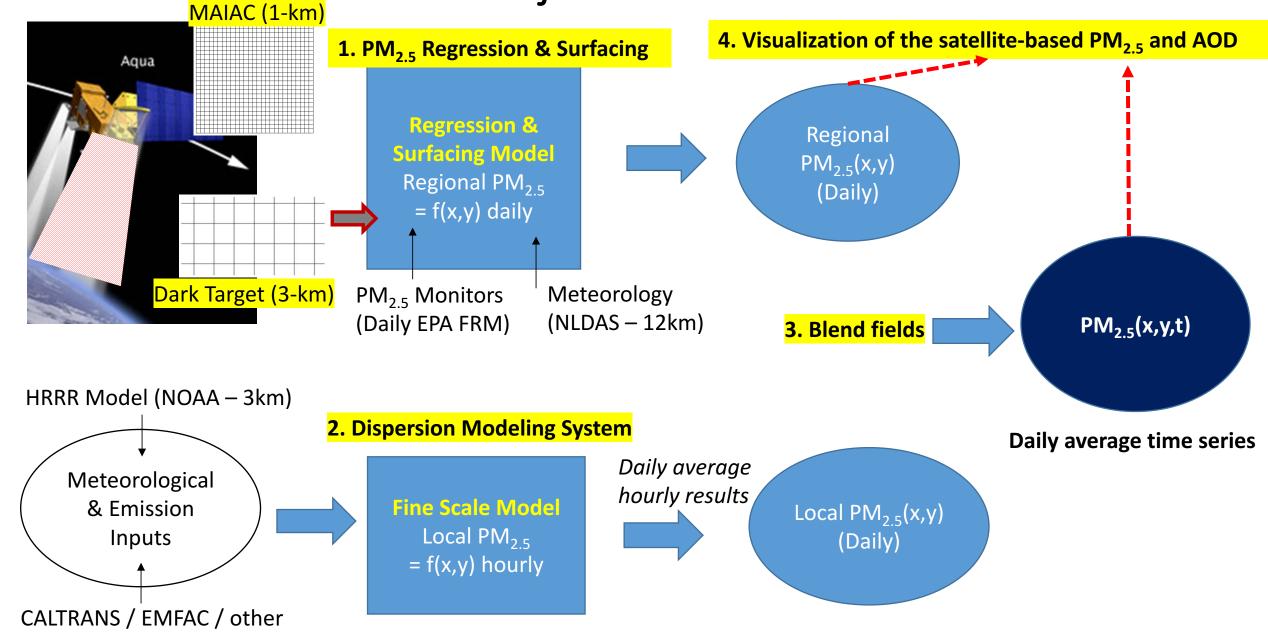


Figure prepared by Minghui Diao, Grace Choi and Tracey Holloway

Diao M., T. Holloway, S. Choi, S.M. O'Neill, M.Z. Al-Hamdan, A.van Donkelaar, R.V. Martin, X. Jin, A.M. Fiore, D.K. Henze, F. Lacey, P.L. Kinney, F. Freedman, N.K. Larkin, Y. Zou, A. Vaidyanathan Methods, availability, and applications of PM_{2.5} exposure estimates derived from ground measurements, models, and satellite datasets, in preparation.

Year 2 Progress Update, PI Diao


Integrating Satellites into Health and Air Quality Management

- 1. Satellite-derived PM_{2.5} grids
 - Develop, apply and evaluate regression model for California;
 - Construct AOD-PM_{2.5} surfaces for California for 2016 and 2017;
 - Preparation of *a review paper* on PM_{2.5} data availability, method and analyses, led by Minghui Diao
- 2. Visualization of satellite-derived $PM_{2.5}$ grids (mostly finished)
 - Develop visualization of MAIAC AOD and derived PM_{2,5} on selected days (LA, Bay Area, Imperial Valley);
 - Analysis and incorporation of HRRR wind fields.
- 3. Dispersion model simulation
 - Development and evaluation of the dispersion model simulations

Tiger Team Participation

- TT#1 led by Patrick Kinney
 - Developed in a GIS at 1-km modeling grid that overlaps the MATES-IV modeling grid; Processed the remotely-sensed data of 2012, integrated into 1-km modeling grid;
 - Deploy low-cost sensors in three Bay Area sites;
 - MAIAC AOD and dispersion modeling analysis of PM_{10} and $PM_{2.5}$ fields across Imperial Valley.
- TT#2 led by Susan O'Neill. Our group will contribute to the PM_{2.5} data derived from satellite data and use downscaling model to provide higher resolution data.
- 8+ academic talks; 5 stakeholders; research website on HAQAST project at SJSU:
 - www.cloud-research.org

Project Overview

